Investigation of bacteria with polyketide synthase genes and antimicrobial activity isolated from South China Sea sponges

W. Zhang, F. Zhang, Z. Li, X. Miao, Q. Meng and X. Zhang

Laboratory of Marine Biotechnology, School of Life Science and Biotechnology and Key Laboratory of Microbial Metabolism, Ministry of Education, Shanghai Jiao Tong University, Shanghai, P.R. China

Introduction

Marine organisms are an important source of natural products (Hill 2006; Blunt et al. 2007), and most of the marine natural products are structurally diverse and have unusual bioactivities (Hill 2003, 2004, 2005, 2006; Blunt et al. 2007, 2008). The availability of biomass is a limiting factor for isolating marine natural products. Therefore, alternative and ecologically sound sources of marine natural products are needed. Marine micro-organisms have contributed to the majority of marine natural products. Many marine organisms especially invertebrates, such as tunicates, bryozoans and sponges, have symbiotic relationships with micro-organisms. There is increasing evidence that many metabolites, in particular polyketides and nonribosomal peptides, are not produced by the marine animals themselves but by their associated bacteria (Kobayashi and Ishibashi 1993; Jensen and Fenical 1994; Piel 2006). Thus, marine organism-associated microbes have attracted more attention as potential sources of marine natural products in order to solve the supply shortage.

Sponges as one of the oldest marine animals and a major component of marine invertebrates are rich sources of potentially valuable natural products such as polyketides, nonribosomal peptides and alkaloids with antibacterial, antifungal, antiviral and anti-inflammatory activities (Friedrich et al. 2001; Proksch et al. 2002; Hill 2003, 2004; Müller and Müller 2003; Blunt et al. 2007), but the exact origin of these compounds is still under investigation (Zheng et al. 2000; Lee et al. 2001). Sponges often...
sponge-derived bioactive compounds (Dunlap et al. 1977; Hentschel et al. 2006; Li and Liu 2006b; Li et al. 2006a, 2007a; Thiel et al. 2007), which have been proposed to supply nutrients, stabilize sponge skeletons, protect the sponge host from bio-fouling or predation (Lee et al. 2001), and be involved in the synthesis of some sponge-derived bioactive compounds (Dunlap et al. 2007). The study of metabolite-related genes of microorganisms associated with sponges will give insight into the origin of sponge-derived natural products.

Polyketides, comprising a large and structurally diverse family of bioactive natural products, are one of the most important classes of marine natural compounds (Hill 2003, 2004, 2005). The common feature of complex polyketides is the involvement of large functional polyketide synthases (PKS) in which the ketosynthase (KS) domain is present in each module and exhibits the highest degree of conservation among all domains. Therefore, the KS domain is especially well suited for phylogenetic analyses of PKS gene diversity (Moffitt and Neilan 2003; Ginolhac et al. 2004; Kim and Fuerst 2006; Fieseler et al. 2007).

Many natural polyketide compounds have been isolated from sponges (Fontana et al. 1998; Okada et al. 2002; Huang et al. 2004), but the investigation of marine microbial PKS genes is still in its infancy. Although some progress has been made by both culture-independent (Piel et al. 2004a,b; Fieseler et al. 2007) and -dependent approaches (Kim et al. 2005; Schirmer et al. 2005; Kim and Fuerst 2006), there is still a lack of knowledge of the marine microbial PKS gene diversity and the biological function associated with the PKS genes. Compared with a culture-independent approach, a culture-dependent strategy can provide valuable insight into the origin of sponge-derived natural products, and cultivable bacteria have contributed significantly to the understanding of sponge–microbe association. The China Sea has become an important source of marine natural compounds since 2001 (Blunt et al. 2007), and investigations of marine microbial PKS and nonribosomal peptide synthetase (NRPS) genes have been initiated (Jiang et al. 2007, 2008; Zhang et al. 2007, 2008). The aim of this study was to obtain bacteria of pharmacological interest from sponge in the South China Sea by an integrated approach of polymerase chain reaction (PCR) screening of PKS gene and bioassay of antimicrobial activity.

Materials and methods

Sponge-associated micro-organisms and bioassay of antimicrobial activity

Among 422 bacteria isolated from four South China Sea sponges, Stelletta tenuis (A), Halichondria rugosa (B), Dysidea avara (C) and Craniella australiensis (D), 98 bacteria belonging to the Firmicutes, Proteobacteria and actinomycetes (Li and Liu 2006b; Li et al. 2007b) were selected randomly for PKS genes screening. Antimicrobial bioassays were carried out by the paper-disc method using six indicator species, Escherichia coli (AS 1:3373), Staphylococcus aureus (AS 1:2465), Pseudomonas fluorescens (AS 1:55), Bacillus subtilis (AS 1:3343), Candida albicans (AS 2:2086) and Aspergillus niger (AS 3:5487) from the Chinese Biodiversity Information Center, Chinese Academy of Sciences. Isolated bacteria were cultured in medium containing 10 g l⁻¹ peptone, 5 g l⁻¹ beef extract prepared with artificial sea water (ASW; Li and Liu 2006b) at 37°C for 24 h. Microbial indicators, except for A. niger, were first cultured in the same medium as before using distilled water instead of ASW at 37°C for 18–24 h and then spread on plates with the same medium containing 2% agar. Aspergillus niger was cultured in medium containing 30 g l⁻¹ sucrose, 2 g l⁻¹ NaNO₃, 1 g l⁻¹ K₂HPO₄, 0.5 g l⁻¹ MgSO₄·7H₂O, 0.5 g l⁻¹ KCl, 0.01 g l⁻¹ FeSO₄ at 28°C for 7 days and then spread on plates with the same medium containing 2% agar. Forty microlitre of the isolate cultures was pipetted onto 5-mm paper discs and placed on the surface of the indicator plate medium. After incubation at 28°C for 3–4 days for indicator A. niger and 37°C for 1 day for the other five indicators, the diameter (mm) of the clear inhibition zone produced around each paper disc was measured. The tests were repeated thrice with duplicates in every repetition. The final value of the zone diameter was an average of six results.

Genomic DNA extraction

The Firmicutes and Proteobacteria bacteria were subjected to centrifugation at 10 000 rev min⁻¹ for 10 min at 4°C and the pellet was suspended in 100 μl of artificial calcium-/magnesium-free seawater (CMFSW; 31·6 g NaCl, 0·75 g KCl, 1·0 g MgSO₄, 2·4 g Tris-HCl, 20 mmol l⁻¹ EDTA, H₂O 1 l, pH 7·0). Then 150 μl of cell-break buffer (50 mmol l⁻¹ Tris, 5 mmol l⁻¹ EDTA, 1% sodium dodecyl sulfate or SDS, pH 11·5) and 150 μl of protease K reaction buffer (50 mmol l⁻¹ Tris, 15 mmol l⁻¹ CaCl₂, pH 3·0) were added. After incubation with protease K (10 mg ml⁻¹) at 55°C for 30 min, genomic DNA was extracted sequentially with Tris-phenol (pH 8·0), Tris-phenol/chloroform/isoamyl alcohol (25 : 24 : 1) and chloroform/isoamyl alcohol (24 : 1) and precipitated with isopropyl alcohol. In the case of actinomycetes, the total DNA was extracted according to the modified phenol–chloroform method (Li et al. 2006a). RNA was removed by RNase (10 mg ml⁻¹; Sigma). The genomic DNA was stored at −20°C before PCR amplification.
16S rRNA gene sequencing and Blast analysis

Amplification of 16S rDNA was performed in a Master Cycler Gradient (Hybaid, Middlesex, UK) with the primers 27f (5′-GGAGATTGTGATCCCTGGCTCAG-3′) and 1492r (5′-CTACGGCTACCTTGTTCAGAG-3′) (Polz et al. 1999). PCR was carried out as follows: initial denaturation at 94°C for 5 min; 30 cycles of 94°C for 1 min, 54°C for 1 min and 72°C for 2 min; and a final extension of 10 min at 72°C. PCR products were purified by electrophoresis in a 1×5% (wt/vol) agarose gel and recovered using a gel purification kit (Shenyang Biocolor Bioscience & Technology Company, Shanghai, China). The purified PCR products were ligated into the pUCm-T vectors (Shenyang Biocolor Bioscience & Technology Company), and transformed into competent E. coli DH5α. Positive recombinants were screened on X-Gal (5-bromo-4-chloro-3-indoly-galactopyranoside)-IPTG (isopropyl-β-D-thiogalactopyranoside)-ampicillin-tetracycline indicator plates by colour-based recombinant selection. Positive clones were identified by PCR amplification with pUCm-T vector primer pairs T7 (5′-TAATACGACTCACTATAGGG-3′) and M13 (5′-CAGGAAACAGCTATGACC-3′) using 55°C as the annealing temperature.

16S rDNA sequences were determined with an ABI 3730 automatic capillary DNA sequencer (AGRF, Brisbane, Australia) with primers T7 and M13. 16S rDNA sequences were matched with sequences in the GenBank database using the Blast search programme (http://www.ncbi.nlm.nih.gov/). The 16S rDNA gene sequences were deposited in GenBank under the accession numbers EF513145.

KS gene screening and phylogenetic analysis

The primers listed in Table 1 were used to amplify the KS domain genes of KS gene clusters. PCR was performed using the following amplification parameters: initial denaturation at 94°C for 5 min; then 35 cycles of 94°C for 1 min, annealing at 50°C for 1 min, extension at 72°C for 2 min; and a final extension at 72°C for 10 min. The products were assessed by gel electrophoresis and amplification of the correct size (700 bp) were gel purified and cloned into pUCm-T vectors. The sequences of the cloned inserts were determined using T7 or M13 primers. Deduced amino acid sequences of KS domains were used as queries to search related proteins in the nr protein database at NCBI using the BlastP algorithm with default parameters. A phylogenetic tree based on the amino acid sequences of KS domains was constructed using the multiple sequence alignment tools in CLUSTALX and MEGA package. Neighbour-joining method was adopted with 1000 bootstrap reiterations. The KS gene sequences were deposited in GenBank under the accession numbers EF622022–EF622038, and EF513145.

Fosmid library construction and PKS gene cluster screening

A Copy Control Fosmid Library Production Kit (Epigen-crete, WI, USA) was used to construct a fosmid library of Staphylococcus lentus isolate A75 following the manufacturer’s recommendation. Recombinant colonies were transferred into 96-well plates. The PKS-containing clones were detected by PCR with primers GCf and GCr (Schirmer et al. 2005) under the following conditions: 94°C for 5 min; 94°C for 1 min, 55°C for 1 min, 72°C for 2 min, 35 cycles; 72°C for 10 min. PKS gene cluster-positive clones were selected for sequencing. After treatment with restriction enzymes PstI, PvuI, Eco72I, BspI, MspI, HindIII, Xbal, and Bsp120I, the fragments were subcloned into pUCm-T vectors and sequenced using T7 and M13 primers. The PKS cluster sequence was assembled from the sequences of the subclones.

Analysis of sequence similarities and PKS domains

Amino acid sequences were deduced from the nucleotide sequences by the ExPaSy Molecular Biology Server. The putative amino acid sequences were predicted by PKS/NRPS (nonribosomal peptide synthetase)-software (http://btisnet.nii.res.in/~zeeshan/webpages/nrpsall.html)
and aligned with other known sequences using the BLAST programme (http://ncbi.nlm.nih.gov/blast). The obtained PKS gene cluster was deposited in GenBank with accession number EU165038.

Results

By PCR screening, 18 of the 98 bacterial isolates from South China Sea sponges, *S. tenuis*, *H. rugosa*, *D. avara* and *C. australiensis* were found to be KS domain-positive. The phylogeny of the 18 isolates is depicted in Table 2. 16S rRNA gene-based BLAST analysis indicated that 15 of the isolates belonged to the phylum *Firmicutes*, among which 14 isolates were closely related to genus *Bacillus*, and 1 to *Staphylococcus lentus*. Two isolates were identified as actinomycetes, and one as *Alcaligenes* sp. in the phylum *Proteobacteria*.

According to BLAST analysis based on the deduced amino acid sequences, most of the KS domains (12/18) matched those of *Bacillus* with identity above 97% (Table 2). In Fig. 1, sequences of various modular PKS types, including NRPS-PKS, trans-acyl transferase (*trans-AT*) PKS, *cis*-acyl transferase (*cis-AT*) PKS and FAS (fatty acid synthase), were selected as references, and the representatives of type II PKS were selected as out-groups. The 18 KS domain sequences were grouped into *trans-AT* type I PKS, and closely related to PKS of marine bacterial symbionts (Fig. 1). No KS domains of these sponge-associated bacteria exhibited a close relationship with FAS or PKS-like FAS.

As shown in Table 3, all of the 18 bacteria with KS genes exhibited antimicrobial activity, and most of the bacteria were active against multiple indicator organisms suggesting broad-spectrum antimicrobial activities. For instance, isolates A75 and B63 exhibited antimicrobial activities against five indicators including fungi, Gram-positive and Gram-negative bacteria.

A PKS gene cluster fragment of 21.8 kb in length (GenBank No. PKS-A75 EU165038) was found by PCR screening of the fosmid library of *S. lentus* isolate A75. A search (http://btisnet.nii.res.in/~zeeshan/webpages/nrpsall.html) yielded five modules as shown in Fig. 2. Module one includes the T, KS and acyl carrier protein (ACP) domains, module two the KS domain, module three the KS, AT, KR and two ACP domains, module four the KS and AT domains and five the KS and KR domains. The T domain serves as the peptidyl carrier domain that covalently binds the substrate via a thioester linkage, the ACP domain with a phosphopantetheinyl arm that carries out unit loading and the AT domain is for carboxylic acid unit selection. The KS domain is for decarboxylative condensation. The function of the ketoreductases (KR) domain is for the postextensional modification of a growing chain (Minowa et al. 2007). The results of the homology search of amino acid sequences of NRPS-PKS domains in the GenBank

Table 2 Similarity of 16S rDNA sequences and beta-ketosynthase domain amino acid sequences to their relatives in GenBank

<table>
<thead>
<tr>
<th>Strain</th>
<th>Accession no.</th>
<th>Closest relative (accession no.)</th>
<th>Identity (%)</th>
<th>KS gene accession no.</th>
<th>Closest relative (accession no.)</th>
<th>Identity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A11</td>
<td>DQ274113</td>
<td>Alcaligenes sp. L981 (AY371437)</td>
<td>98</td>
<td>EF622022</td>
<td>Bacillus subtilis W168 PKSX (AAA85144)</td>
<td>98</td>
</tr>
<tr>
<td>A45</td>
<td>DQ274116</td>
<td>Bacillus sporothermodurans (U49080)</td>
<td>95</td>
<td>EF622023</td>
<td>Bacillus subtilis complete genome section9 (Z99112)</td>
<td>98</td>
</tr>
<tr>
<td>A75</td>
<td>DQ091004</td>
<td>Staphylococcus lentus S5H39 (AB219154)</td>
<td>100</td>
<td>EF622024</td>
<td>Bacillus subtilis BA7 (CAA78479)</td>
<td>96</td>
</tr>
<tr>
<td>B17</td>
<td>EF370046</td>
<td>Bacillus subtilis BCR 17366 (EF433402)</td>
<td>100</td>
<td>EF622029</td>
<td>Bacillus subtilis W168 PKSX (AAA85144)</td>
<td>94</td>
</tr>
<tr>
<td>B18</td>
<td>DQ277986</td>
<td>Bacillus subtilis MO2 (AY553095)</td>
<td>100</td>
<td>EF622030</td>
<td>Bacillus subtilis PKSJ (P40806)</td>
<td>97</td>
</tr>
<tr>
<td>B19</td>
<td>EF370047</td>
<td>Bacillus subtilis AU25 (EF032688)</td>
<td>100</td>
<td>EF622031</td>
<td>Bacillus subtilis PKSX (AAA85144)</td>
<td>95</td>
</tr>
<tr>
<td>B22</td>
<td>EF370048</td>
<td>Bacillus sp. MHS007 (DQ993316)</td>
<td>100</td>
<td>EF622032</td>
<td>Bacillus subtilis strain 168 (NP389598)</td>
<td>97</td>
</tr>
<tr>
<td>B27</td>
<td>EF370049</td>
<td>Bacillus subtilis MO2 (AY553095)</td>
<td>100</td>
<td>EF622033</td>
<td>Bacillus subtilis strain 168 (NP389601)</td>
<td>99</td>
</tr>
<tr>
<td>B63</td>
<td>EF370051</td>
<td>Bacillus amyloapplicatus (AY620954)</td>
<td>100</td>
<td>EF622034</td>
<td>Bacillus amyloapplicatus F7842 (YP001421792)</td>
<td>99</td>
</tr>
<tr>
<td>B114</td>
<td>EF370052</td>
<td>Bacillus subtilis CGMC1889 (EF159949)</td>
<td>100</td>
<td>EF622025</td>
<td>Bacillus subtilis strain 168 (NP389600)</td>
<td>98</td>
</tr>
<tr>
<td>B131</td>
<td>EF370053</td>
<td>Bacillus subtilis B215 (AY162133)</td>
<td>100</td>
<td>EF622026</td>
<td>Bacillus subtilis PKSP (E69679)</td>
<td>99</td>
</tr>
<tr>
<td>B144</td>
<td>EF370054</td>
<td>Bacillus subtilis AU25 (EF032688)</td>
<td>99</td>
<td>EF622027</td>
<td>Bacillus subtilis strain 168 (NP389598)</td>
<td>97</td>
</tr>
<tr>
<td>B145</td>
<td>EF370055</td>
<td>Bacillus subtilis WL-6 (DQ198162)</td>
<td>100</td>
<td>EF622028</td>
<td>Bacillus subtilis strain 168 (NP389600)</td>
<td>97</td>
</tr>
<tr>
<td>C51</td>
<td>DQ091005</td>
<td>Bacillus Vallisorris (AB021198)</td>
<td>99</td>
<td>EF622035</td>
<td>Bacillus subtilis strain 168 (NP389600)</td>
<td>91</td>
</tr>
<tr>
<td>C77</td>
<td>DQ091006</td>
<td>Bacillus Vallisorris (AB021198)</td>
<td>100</td>
<td>EF622036</td>
<td>Bacillus subtilis BA7 (CAA78479)</td>
<td>91</td>
</tr>
<tr>
<td>C89</td>
<td>DQ091007</td>
<td>Bacillus Vallisorris (AB021198)</td>
<td>99</td>
<td>EF513145</td>
<td>Bacillus subtilis strain 168 (NP389600)</td>
<td>91</td>
</tr>
<tr>
<td>DA20</td>
<td>DQ180135</td>
<td>Actinomycetales bacterium H07 (AY944257)</td>
<td>100</td>
<td>EF622037</td>
<td>Bacillus subtilis PKSJ (P40806)</td>
<td>97</td>
</tr>
<tr>
<td>DA23</td>
<td>DQ180138</td>
<td>Streptomyces sp. FXU23 (AY314785)</td>
<td>99</td>
<td>EF622038</td>
<td>Bacillus subtilis PKSJ (P40806)</td>
<td>97</td>
</tr>
</tbody>
</table>
Figure 1 Neighbour-joining phylogenetic tree of bacteria associated with sponges (indicated by) and reference sequences based on the amino acid sequences of KS domains. Percentage bootstrap values of neighbour-joining analysis from 1000 resamplings are indicated at the nodes. The scale bar represents 0.2 amino acid substitutions per site.
Database are shown in Table 4. The deduced amino acid sequences showed high identities with known sequences from *B. subtilis* (NP_389600, CAA78479 and AAF08794).

Discussion

Bacillus is well known to produce metabolites with antimicrobial, antifungal and cytotoxic properties. Although *Bacillus* is typically a terrestrial bacterium, it has also been isolated from marine organisms such as soft corals (Kapley et al. 2007), and marine sponges (Prokofeva et al. 1999; Hentschel et al. 2001). The previous investigation of the in vivo bacterial communities of the four sponges, *S. tenuis*, *H. rugosa*, *D. avara* and *C. australiensis*, by culture-independent denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene library methods did not show a preponderance of members of the phylum *Firmicutes*, but members of the genus *Bacillus* were detected in a 16S rRNA library (Li and Liu 2006b; Li et al. 2006a, 2007a). The high number of *Bacillus* isolates in this study may be owing to the selectivity of the medium.

Piel et al. 2004a were the first to investigate a PKS gene cluster obtained from the marine sponge *Theonella swinhoei*, and now PKS gene clusters from more than 25 demosponge species from different oceanic locations near Japan, Australia, Bahamas, France, Netherlands and China.
have been investigated, and most of the reported marine PKS are type I PKS (Schirmer et al. 2005; Kim and Fuerst 2006; Fieseler et al. 2007). Similarly, all the detected PKS in this study belong to type I and show a close relationship with the reported marine PKS. For instance, DQ227678, DQ227679 and DQ227680 were found in Bacillus sp. associated with the marine sponge *Pseudoceratina clavata* (Kim and Fuerst 2006); AAY00025, AAY00026 and AAY00027 came from the uncultured bacterial symbionts of sponge *Discoderminia dissolute*; ABM63527 was from *Candidatus Endobugula sertula*, an uncultivated bacterial symbiont of the marine bryozoan *Bugula neritina*; AAS47562 was from the bacterial symbiont of *Paederus fusipes* and AAV97870 was from the symbiont bacterium of *Theonella swinhoe*. Marine type II PKS has been rarely found (Jiang et al. 2007, 2008), and there is no report on marine type III PKS to date.

In bacteria, the biosynthesis of polyketide compounds, such as those of the macrolide, polycene or polyether type, usually requires type I PKS, which are large multifunctional enzymes organized as modules. Type I PKS have been of special interest for their modularity and suitability for the creation of customized polyketides (McDaniel et al. 1994; Hopwood 1997; Pfeifer et al. 2001). A multiplasmid approach employing type I PKS genes has the potential to create thousands of combinations of PKS modules to produce novel polyketides (Xue et al. 1999). Bacterial type II and III PKS are heterologous or homologous multi-enzyme complexes carrying a single set of iteratively acting activities that are generally responsible for aromatic polyketides (Malpartida and Hopwood 1984; Funa et al. 1999).

Some KS genes are included in the NRPS-PKS group, which includes a certain proportion of current marine PKS genes of cyanobacteria (Ehrenreich et al. 2005), Roseobacter (Martens et al. 2007) and bacteria associated with sponges (Fieseler et al. 2007). We also found NRPS genes in seven isolates A11, A75, B27, B114, B131, B144, B145 (Zhang et al. 2008), suggesting the presence of this NRPS-PKS gene cluster type in these sponge-associated bacteria.

It has been suggested that the sponge-associated bacteria may play chemical defense roles by releasing biologically active metabolites (Müller et al. 2004). The role of sponge-associated bacteria in the chemical defense of sponge hosts is supported by the PKS genes screening and antimicrobial tests in this study. According to the phylogenetic analysis, most of the closest relatives of the obtained KS domains are involved in the production of pharmacologically active polyketides. For example, BKS1 (ABG54500) and BKS2 (ABG54501) from an uncultured microbial symbiont of the marine bryozoan *Bugula neritina*, *Candidatus Endobugula sertula*, were thought to be responsible for bryostatin production (Lopanik et al. 2006). BryB (ABM63527), an unusual modular polyketide synthase, was suggested to be involved in bryostatin synthesis by the uncultivated bacterial symbiont of *B. neritina* (Hildebrand et al. 2004; Sudek et al. 2007). YP001421792 from *Bacillus amyloliquefaciens* FZB42 isolated from a plant rootstalk can accelerate the growth of plants and help plants defend against invading pathogens (Chen et al. 2006). PedH (AAS47562) from a sponge was suggested to be related to an enzyme that synthesizes pederin-type polyketides (Piel et al. 2004a). LnmJ (AAN85523) was found in *Streptomyces atroolivaceus*, a symbiont of beetles, and this bacterium’s PKS gene cluster was found to be involved in the synthesis of an anticancer drug leinamycin (Tang et al. 2004).

In summary, combined with bioactivity assays, the PKS gene-based molecular approach can be applied to efficient screening of strains of pharmaceutical value and the prediction of related compounds. The PKS gene diversity and different antimicrobial spectra indicate the chemical diversity of polyketide metabolites. *Firmicutes* especially *Bacillus*, actinomycetes and *Proteobacteria* isolate from sponge in the South China Sea may be potential sources for polyketides production.

Acknowledgements

This research was supported by the ‘High-Tech Research and Development Program of China’ (2007AA09Z447) and ‘Program for New Century Excellent Talents in University (NCET), China’. The authors thank the Shanghai Leading Academic Discipline Project (B203) for having provided platform support.

References

